extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22xC8).1S3 = A4:C16 | φ: S3/C1 → S3 ⊆ Aut C22xC8 | 48 | 3 | (C2^2xC8).1S3 | 192,186 |
(C22xC8).2S3 = A4:Q16 | φ: S3/C1 → S3 ⊆ Aut C22xC8 | 48 | 6- | (C2^2xC8).2S3 | 192,957 |
(C22xC8).3S3 = C24.98D4 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 96 | | (C2^2xC8).3S3 | 192,108 |
(C22xC8).4S3 = (C2xC24):5C4 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 192 | | (C2^2xC8).4S3 | 192,109 |
(C22xC8).5S3 = C12.9C42 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 192 | | (C2^2xC8).5S3 | 192,110 |
(C22xC8).6S3 = C12.10C42 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 96 | | (C2^2xC8).6S3 | 192,111 |
(C22xC8).7S3 = C2xDic3:C8 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 192 | | (C2^2xC8).7S3 | 192,658 |
(C22xC8).8S3 = Dic3:C8:C2 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 96 | | (C2^2xC8).8S3 | 192,661 |
(C22xC8).9S3 = C2xC2.Dic12 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 192 | | (C2^2xC8).9S3 | 192,662 |
(C22xC8).10S3 = C2xC24:1C4 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 192 | | (C2^2xC8).10S3 | 192,664 |
(C22xC8).11S3 = C24.82D4 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 96 | | (C2^2xC8).11S3 | 192,675 |
(C22xC8).12S3 = C22xDic12 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 192 | | (C2^2xC8).12S3 | 192,1301 |
(C22xC8).13S3 = C23.27D12 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 96 | | (C2^2xC8).13S3 | 192,665 |
(C22xC8).14S3 = C2xC24.C4 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 96 | | (C2^2xC8).14S3 | 192,666 |
(C22xC8).15S3 = C2xC8:Dic3 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 192 | | (C2^2xC8).15S3 | 192,663 |
(C22xC8).16S3 = C2xC12.C8 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 96 | | (C2^2xC8).16S3 | 192,656 |
(C22xC8).17S3 = C2xC24:C4 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 192 | | (C2^2xC8).17S3 | 192,659 |
(C22xC8).18S3 = C12.12C42 | φ: S3/C3 → C2 ⊆ Aut C22xC8 | 96 | | (C2^2xC8).18S3 | 192,660 |
(C22xC8).19S3 = C22xC3:C16 | central extension (φ=1) | 192 | | (C2^2xC8).19S3 | 192,655 |
(C22xC8).20S3 = Dic3xC2xC8 | central extension (φ=1) | 192 | | (C2^2xC8).20S3 | 192,657 |