Extensions 1→N→G→Q→1 with N=C22xC8 and Q=S3

Direct product G=NxQ with N=C22xC8 and Q=S3
dρLabelID
S3xC22xC896S3xC2^2xC8192,1295

Semidirect products G=N:Q with N=C22xC8 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C22xC8):1S3 = C8xS4φ: S3/C1S3 ⊆ Aut C22xC8243(C2^2xC8):1S3192,958
(C22xC8):2S3 = A4:D8φ: S3/C1S3 ⊆ Aut C22xC8246+(C2^2xC8):2S3192,961
(C22xC8):3S3 = C8:2S4φ: S3/C1S3 ⊆ Aut C22xC8246(C2^2xC8):3S3192,960
(C22xC8):4S3 = C8:S4φ: S3/C1S3 ⊆ Aut C22xC8246(C2^2xC8):4S3192,959
(C22xC8):5S3 = C2xD6:C8φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):5S3192,667
(C22xC8):6S3 = C8xC3:D4φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):6S3192,668
(C22xC8):7S3 = (C22xC8):7S3φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):7S3192,669
(C22xC8):8S3 = C2xC2.D24φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):8S3192,671
(C22xC8):9S3 = C23.28D12φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):9S3192,672
(C22xC8):10S3 = C24:29D4φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):10S3192,674
(C22xC8):11S3 = C22xD24φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):11S3192,1299
(C22xC8):12S3 = C2xC4oD24φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):12S3192,1300
(C22xC8):13S3 = C24:30D4φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):13S3192,673
(C22xC8):14S3 = C22xC24:C2φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):14S3192,1298
(C22xC8):15S3 = C24:33D4φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):15S3192,670
(C22xC8):16S3 = C22xC8:S3φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):16S3192,1296
(C22xC8):17S3 = C2xC8oD12φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8):17S3192,1297

Non-split extensions G=N.Q with N=C22xC8 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C22xC8).1S3 = A4:C16φ: S3/C1S3 ⊆ Aut C22xC8483(C2^2xC8).1S3192,186
(C22xC8).2S3 = A4:Q16φ: S3/C1S3 ⊆ Aut C22xC8486-(C2^2xC8).2S3192,957
(C22xC8).3S3 = C24.98D4φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8).3S3192,108
(C22xC8).4S3 = (C2xC24):5C4φ: S3/C3C2 ⊆ Aut C22xC8192(C2^2xC8).4S3192,109
(C22xC8).5S3 = C12.9C42φ: S3/C3C2 ⊆ Aut C22xC8192(C2^2xC8).5S3192,110
(C22xC8).6S3 = C12.10C42φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8).6S3192,111
(C22xC8).7S3 = C2xDic3:C8φ: S3/C3C2 ⊆ Aut C22xC8192(C2^2xC8).7S3192,658
(C22xC8).8S3 = Dic3:C8:C2φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8).8S3192,661
(C22xC8).9S3 = C2xC2.Dic12φ: S3/C3C2 ⊆ Aut C22xC8192(C2^2xC8).9S3192,662
(C22xC8).10S3 = C2xC24:1C4φ: S3/C3C2 ⊆ Aut C22xC8192(C2^2xC8).10S3192,664
(C22xC8).11S3 = C24.82D4φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8).11S3192,675
(C22xC8).12S3 = C22xDic12φ: S3/C3C2 ⊆ Aut C22xC8192(C2^2xC8).12S3192,1301
(C22xC8).13S3 = C23.27D12φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8).13S3192,665
(C22xC8).14S3 = C2xC24.C4φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8).14S3192,666
(C22xC8).15S3 = C2xC8:Dic3φ: S3/C3C2 ⊆ Aut C22xC8192(C2^2xC8).15S3192,663
(C22xC8).16S3 = C2xC12.C8φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8).16S3192,656
(C22xC8).17S3 = C2xC24:C4φ: S3/C3C2 ⊆ Aut C22xC8192(C2^2xC8).17S3192,659
(C22xC8).18S3 = C12.12C42φ: S3/C3C2 ⊆ Aut C22xC896(C2^2xC8).18S3192,660
(C22xC8).19S3 = C22xC3:C16central extension (φ=1)192(C2^2xC8).19S3192,655
(C22xC8).20S3 = Dic3xC2xC8central extension (φ=1)192(C2^2xC8).20S3192,657

׿
x
:
Z
F
o
wr
Q
<